Copied to
clipboard

G = C2×C327D8order 288 = 25·32

Direct product of C2 and C327D8

direct product, metabelian, supersoluble, monomial

Aliases: C2×C327D8, C62.130D4, (C3×C6)⋊7D8, (C6×D4)⋊1S3, C63(D4⋊S3), (C3×D4)⋊14D6, C3214(C2×D8), (C3×C12).97D4, (C2×C12).149D6, C12.56(C3⋊D4), C12.97(C22×S3), C4.5(C327D4), C12⋊S318C22, (C6×C12).140C22, (C3×C12).101C23, C324C822C22, (D4×C32)⋊16C22, C22.21(C327D4), (D4×C3×C6)⋊5C2, D43(C2×C3⋊S3), C34(C2×D4⋊S3), (C2×D4)⋊1(C3⋊S3), (C2×C324C8)⋊9C2, (C3×C6).278(C2×D4), C6.119(C2×C3⋊D4), (C2×C12⋊S3)⋊14C2, C4.11(C22×C3⋊S3), C2.8(C2×C327D4), (C2×C6).98(C3⋊D4), (C2×C4).46(C2×C3⋊S3), SmallGroup(288,788)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C2×C327D8
C1C3C32C3×C6C3×C12C12⋊S3C2×C12⋊S3 — C2×C327D8
C32C3×C6C3×C12 — C2×C327D8
C1C22C2×C4C2×D4

Generators and relations for C2×C327D8
 G = < a,b,c,d,e | a2=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=ebe=b-1, dcd-1=ece=c-1, ede=d-1 >

Subgroups: 980 in 228 conjugacy classes, 77 normal (17 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C8, C2×C4, D4, D4, C23, C32, C12, D6, C2×C6, C2×C6, C2×C8, D8, C2×D4, C2×D4, C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, D12, C2×C12, C3×D4, C3×D4, C22×S3, C22×C6, C2×D8, C3×C12, C2×C3⋊S3, C62, C62, C2×C3⋊C8, D4⋊S3, C2×D12, C6×D4, C324C8, C12⋊S3, C12⋊S3, C6×C12, D4×C32, D4×C32, C22×C3⋊S3, C2×C62, C2×D4⋊S3, C2×C324C8, C327D8, C2×C12⋊S3, D4×C3×C6, C2×C327D8
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C3⋊S3, C3⋊D4, C22×S3, C2×D8, C2×C3⋊S3, D4⋊S3, C2×C3⋊D4, C327D4, C22×C3⋊S3, C2×D4⋊S3, C327D8, C2×C327D4, C2×C327D8

Smallest permutation representation of C2×C327D8
On 144 points
Generators in S144
(1 60)(2 61)(3 62)(4 63)(5 64)(6 57)(7 58)(8 59)(9 140)(10 141)(11 142)(12 143)(13 144)(14 137)(15 138)(16 139)(17 84)(18 85)(19 86)(20 87)(21 88)(22 81)(23 82)(24 83)(25 80)(26 73)(27 74)(28 75)(29 76)(30 77)(31 78)(32 79)(33 68)(34 69)(35 70)(36 71)(37 72)(38 65)(39 66)(40 67)(41 96)(42 89)(43 90)(44 91)(45 92)(46 93)(47 94)(48 95)(49 98)(50 99)(51 100)(52 101)(53 102)(54 103)(55 104)(56 97)(105 129)(106 130)(107 131)(108 132)(109 133)(110 134)(111 135)(112 136)(113 127)(114 128)(115 121)(116 122)(117 123)(118 124)(119 125)(120 126)
(1 9 55)(2 56 10)(3 11 49)(4 50 12)(5 13 51)(6 52 14)(7 15 53)(8 54 16)(17 127 44)(18 45 128)(19 121 46)(20 47 122)(21 123 48)(22 41 124)(23 125 42)(24 43 126)(25 68 106)(26 107 69)(27 70 108)(28 109 71)(29 72 110)(30 111 65)(31 66 112)(32 105 67)(33 130 80)(34 73 131)(35 132 74)(36 75 133)(37 134 76)(38 77 135)(39 136 78)(40 79 129)(57 101 137)(58 138 102)(59 103 139)(60 140 104)(61 97 141)(62 142 98)(63 99 143)(64 144 100)(81 96 118)(82 119 89)(83 90 120)(84 113 91)(85 92 114)(86 115 93)(87 94 116)(88 117 95)
(1 20 25)(2 26 21)(3 22 27)(4 28 23)(5 24 29)(6 30 17)(7 18 31)(8 32 19)(9 47 68)(10 69 48)(11 41 70)(12 71 42)(13 43 72)(14 65 44)(15 45 66)(16 67 46)(33 140 94)(34 95 141)(35 142 96)(36 89 143)(37 144 90)(38 91 137)(39 138 92)(40 93 139)(49 124 108)(50 109 125)(51 126 110)(52 111 127)(53 128 112)(54 105 121)(55 122 106)(56 107 123)(57 77 84)(58 85 78)(59 79 86)(60 87 80)(61 73 88)(62 81 74)(63 75 82)(64 83 76)(97 131 117)(98 118 132)(99 133 119)(100 120 134)(101 135 113)(102 114 136)(103 129 115)(104 116 130)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(2 8)(3 7)(4 6)(9 55)(10 54)(11 53)(12 52)(13 51)(14 50)(15 49)(16 56)(17 28)(18 27)(19 26)(20 25)(21 32)(22 31)(23 30)(24 29)(33 116)(34 115)(35 114)(36 113)(37 120)(38 119)(39 118)(40 117)(41 112)(42 111)(43 110)(44 109)(45 108)(46 107)(47 106)(48 105)(57 63)(58 62)(59 61)(65 125)(66 124)(67 123)(68 122)(69 121)(70 128)(71 127)(72 126)(73 86)(74 85)(75 84)(76 83)(77 82)(78 81)(79 88)(80 87)(89 135)(90 134)(91 133)(92 132)(93 131)(94 130)(95 129)(96 136)(97 139)(98 138)(99 137)(100 144)(101 143)(102 142)(103 141)(104 140)

G:=sub<Sym(144)| (1,60)(2,61)(3,62)(4,63)(5,64)(6,57)(7,58)(8,59)(9,140)(10,141)(11,142)(12,143)(13,144)(14,137)(15,138)(16,139)(17,84)(18,85)(19,86)(20,87)(21,88)(22,81)(23,82)(24,83)(25,80)(26,73)(27,74)(28,75)(29,76)(30,77)(31,78)(32,79)(33,68)(34,69)(35,70)(36,71)(37,72)(38,65)(39,66)(40,67)(41,96)(42,89)(43,90)(44,91)(45,92)(46,93)(47,94)(48,95)(49,98)(50,99)(51,100)(52,101)(53,102)(54,103)(55,104)(56,97)(105,129)(106,130)(107,131)(108,132)(109,133)(110,134)(111,135)(112,136)(113,127)(114,128)(115,121)(116,122)(117,123)(118,124)(119,125)(120,126), (1,9,55)(2,56,10)(3,11,49)(4,50,12)(5,13,51)(6,52,14)(7,15,53)(8,54,16)(17,127,44)(18,45,128)(19,121,46)(20,47,122)(21,123,48)(22,41,124)(23,125,42)(24,43,126)(25,68,106)(26,107,69)(27,70,108)(28,109,71)(29,72,110)(30,111,65)(31,66,112)(32,105,67)(33,130,80)(34,73,131)(35,132,74)(36,75,133)(37,134,76)(38,77,135)(39,136,78)(40,79,129)(57,101,137)(58,138,102)(59,103,139)(60,140,104)(61,97,141)(62,142,98)(63,99,143)(64,144,100)(81,96,118)(82,119,89)(83,90,120)(84,113,91)(85,92,114)(86,115,93)(87,94,116)(88,117,95), (1,20,25)(2,26,21)(3,22,27)(4,28,23)(5,24,29)(6,30,17)(7,18,31)(8,32,19)(9,47,68)(10,69,48)(11,41,70)(12,71,42)(13,43,72)(14,65,44)(15,45,66)(16,67,46)(33,140,94)(34,95,141)(35,142,96)(36,89,143)(37,144,90)(38,91,137)(39,138,92)(40,93,139)(49,124,108)(50,109,125)(51,126,110)(52,111,127)(53,128,112)(54,105,121)(55,122,106)(56,107,123)(57,77,84)(58,85,78)(59,79,86)(60,87,80)(61,73,88)(62,81,74)(63,75,82)(64,83,76)(97,131,117)(98,118,132)(99,133,119)(100,120,134)(101,135,113)(102,114,136)(103,129,115)(104,116,130), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (2,8)(3,7)(4,6)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,56)(17,28)(18,27)(19,26)(20,25)(21,32)(22,31)(23,30)(24,29)(33,116)(34,115)(35,114)(36,113)(37,120)(38,119)(39,118)(40,117)(41,112)(42,111)(43,110)(44,109)(45,108)(46,107)(47,106)(48,105)(57,63)(58,62)(59,61)(65,125)(66,124)(67,123)(68,122)(69,121)(70,128)(71,127)(72,126)(73,86)(74,85)(75,84)(76,83)(77,82)(78,81)(79,88)(80,87)(89,135)(90,134)(91,133)(92,132)(93,131)(94,130)(95,129)(96,136)(97,139)(98,138)(99,137)(100,144)(101,143)(102,142)(103,141)(104,140)>;

G:=Group( (1,60)(2,61)(3,62)(4,63)(5,64)(6,57)(7,58)(8,59)(9,140)(10,141)(11,142)(12,143)(13,144)(14,137)(15,138)(16,139)(17,84)(18,85)(19,86)(20,87)(21,88)(22,81)(23,82)(24,83)(25,80)(26,73)(27,74)(28,75)(29,76)(30,77)(31,78)(32,79)(33,68)(34,69)(35,70)(36,71)(37,72)(38,65)(39,66)(40,67)(41,96)(42,89)(43,90)(44,91)(45,92)(46,93)(47,94)(48,95)(49,98)(50,99)(51,100)(52,101)(53,102)(54,103)(55,104)(56,97)(105,129)(106,130)(107,131)(108,132)(109,133)(110,134)(111,135)(112,136)(113,127)(114,128)(115,121)(116,122)(117,123)(118,124)(119,125)(120,126), (1,9,55)(2,56,10)(3,11,49)(4,50,12)(5,13,51)(6,52,14)(7,15,53)(8,54,16)(17,127,44)(18,45,128)(19,121,46)(20,47,122)(21,123,48)(22,41,124)(23,125,42)(24,43,126)(25,68,106)(26,107,69)(27,70,108)(28,109,71)(29,72,110)(30,111,65)(31,66,112)(32,105,67)(33,130,80)(34,73,131)(35,132,74)(36,75,133)(37,134,76)(38,77,135)(39,136,78)(40,79,129)(57,101,137)(58,138,102)(59,103,139)(60,140,104)(61,97,141)(62,142,98)(63,99,143)(64,144,100)(81,96,118)(82,119,89)(83,90,120)(84,113,91)(85,92,114)(86,115,93)(87,94,116)(88,117,95), (1,20,25)(2,26,21)(3,22,27)(4,28,23)(5,24,29)(6,30,17)(7,18,31)(8,32,19)(9,47,68)(10,69,48)(11,41,70)(12,71,42)(13,43,72)(14,65,44)(15,45,66)(16,67,46)(33,140,94)(34,95,141)(35,142,96)(36,89,143)(37,144,90)(38,91,137)(39,138,92)(40,93,139)(49,124,108)(50,109,125)(51,126,110)(52,111,127)(53,128,112)(54,105,121)(55,122,106)(56,107,123)(57,77,84)(58,85,78)(59,79,86)(60,87,80)(61,73,88)(62,81,74)(63,75,82)(64,83,76)(97,131,117)(98,118,132)(99,133,119)(100,120,134)(101,135,113)(102,114,136)(103,129,115)(104,116,130), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (2,8)(3,7)(4,6)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,56)(17,28)(18,27)(19,26)(20,25)(21,32)(22,31)(23,30)(24,29)(33,116)(34,115)(35,114)(36,113)(37,120)(38,119)(39,118)(40,117)(41,112)(42,111)(43,110)(44,109)(45,108)(46,107)(47,106)(48,105)(57,63)(58,62)(59,61)(65,125)(66,124)(67,123)(68,122)(69,121)(70,128)(71,127)(72,126)(73,86)(74,85)(75,84)(76,83)(77,82)(78,81)(79,88)(80,87)(89,135)(90,134)(91,133)(92,132)(93,131)(94,130)(95,129)(96,136)(97,139)(98,138)(99,137)(100,144)(101,143)(102,142)(103,141)(104,140) );

G=PermutationGroup([[(1,60),(2,61),(3,62),(4,63),(5,64),(6,57),(7,58),(8,59),(9,140),(10,141),(11,142),(12,143),(13,144),(14,137),(15,138),(16,139),(17,84),(18,85),(19,86),(20,87),(21,88),(22,81),(23,82),(24,83),(25,80),(26,73),(27,74),(28,75),(29,76),(30,77),(31,78),(32,79),(33,68),(34,69),(35,70),(36,71),(37,72),(38,65),(39,66),(40,67),(41,96),(42,89),(43,90),(44,91),(45,92),(46,93),(47,94),(48,95),(49,98),(50,99),(51,100),(52,101),(53,102),(54,103),(55,104),(56,97),(105,129),(106,130),(107,131),(108,132),(109,133),(110,134),(111,135),(112,136),(113,127),(114,128),(115,121),(116,122),(117,123),(118,124),(119,125),(120,126)], [(1,9,55),(2,56,10),(3,11,49),(4,50,12),(5,13,51),(6,52,14),(7,15,53),(8,54,16),(17,127,44),(18,45,128),(19,121,46),(20,47,122),(21,123,48),(22,41,124),(23,125,42),(24,43,126),(25,68,106),(26,107,69),(27,70,108),(28,109,71),(29,72,110),(30,111,65),(31,66,112),(32,105,67),(33,130,80),(34,73,131),(35,132,74),(36,75,133),(37,134,76),(38,77,135),(39,136,78),(40,79,129),(57,101,137),(58,138,102),(59,103,139),(60,140,104),(61,97,141),(62,142,98),(63,99,143),(64,144,100),(81,96,118),(82,119,89),(83,90,120),(84,113,91),(85,92,114),(86,115,93),(87,94,116),(88,117,95)], [(1,20,25),(2,26,21),(3,22,27),(4,28,23),(5,24,29),(6,30,17),(7,18,31),(8,32,19),(9,47,68),(10,69,48),(11,41,70),(12,71,42),(13,43,72),(14,65,44),(15,45,66),(16,67,46),(33,140,94),(34,95,141),(35,142,96),(36,89,143),(37,144,90),(38,91,137),(39,138,92),(40,93,139),(49,124,108),(50,109,125),(51,126,110),(52,111,127),(53,128,112),(54,105,121),(55,122,106),(56,107,123),(57,77,84),(58,85,78),(59,79,86),(60,87,80),(61,73,88),(62,81,74),(63,75,82),(64,83,76),(97,131,117),(98,118,132),(99,133,119),(100,120,134),(101,135,113),(102,114,136),(103,129,115),(104,116,130)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(2,8),(3,7),(4,6),(9,55),(10,54),(11,53),(12,52),(13,51),(14,50),(15,49),(16,56),(17,28),(18,27),(19,26),(20,25),(21,32),(22,31),(23,30),(24,29),(33,116),(34,115),(35,114),(36,113),(37,120),(38,119),(39,118),(40,117),(41,112),(42,111),(43,110),(44,109),(45,108),(46,107),(47,106),(48,105),(57,63),(58,62),(59,61),(65,125),(66,124),(67,123),(68,122),(69,121),(70,128),(71,127),(72,126),(73,86),(74,85),(75,84),(76,83),(77,82),(78,81),(79,88),(80,87),(89,135),(90,134),(91,133),(92,132),(93,131),(94,130),(95,129),(96,136),(97,139),(98,138),(99,137),(100,144),(101,143),(102,142),(103,141),(104,140)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D4A4B6A···6L6M···6AB8A8B8C8D12A···12H
order122222223333446···66···6888812···12
size11114436362222222···24···4181818184···4

54 irreducible representations

dim11111222222224
type++++++++++++
imageC1C2C2C2C2S3D4D4D6D6D8C3⋊D4C3⋊D4D4⋊S3
kernelC2×C327D8C2×C324C8C327D8C2×C12⋊S3D4×C3×C6C6×D4C3×C12C62C2×C12C3×D4C3×C6C12C2×C6C6
# reps11411411484888

Matrix representation of C2×C327D8 in GL6(𝔽73)

100000
010000
0072000
0007200
000010
000001
,
72720000
100000
001000
000100
000010
000001
,
010000
72720000
000100
00727200
000010
000001
,
100000
72720000
00134300
00306000
00004116
0000410
,
100000
72720000
0007200
0072000
000010
0000272

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,72,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,13,30,0,0,0,0,43,60,0,0,0,0,0,0,41,41,0,0,0,0,16,0],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,0,0,1,2,0,0,0,0,0,72] >;

C2×C327D8 in GAP, Magma, Sage, TeX

C_2\times C_3^2\rtimes_7D_8
% in TeX

G:=Group("C2xC3^2:7D8");
// GroupNames label

G:=SmallGroup(288,788);
// by ID

G=gap.SmallGroup(288,788);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,254,675,185,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=e*b*e=b^-1,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽